A parallel version of the fast multipole method
نویسندگان
چکیده
منابع مشابه
A parallel directional Fast Multipole Method
This paper introduces a parallel directional fast multipole method (FMM) for solving N-body problems with highly oscillatory kernels, with a focus on the Helmholtz kernel in three dimensions. This class of oscillatory kernels requires a more restrictive low-rank criterion than that of the low-frequency regime, and thus effective parallelizations must adapt to the modified data dependencies. We ...
متن کاملA Matrix Version of the Fast Multipole Method
We present a matrix interpretation of the three-dimensional fast multipole method (FMM). The FMM is for efficient computation of gravitational/electrostatic potentials and fields. It has found various applications and inspired the design of many efficient algorithms. The one-dimensional FMM is well interpreted in terms of matrix computations. The threedimensional matrix version reveals the unde...
متن کاملA parallel fast multipole method for elliptic difference equations
A new fast multipole formulation for solving elliptic difference equations on unbounded domains and its parallel implementation are presented. These difference equations can arise directly in the description of physical systems, e.g. crystal structures, or indirectly through the discretization of PDEs. In the analog to solving continuous inhomogeneous differential equations using Green’s functi...
متن کاملA Provably Optimal, Distribution-Independent Parallel Fast Multipole Method
The Fast Multipole Method (FMM) is a robust technique for the rapid evaluation of the combined e ect of pairwise interactions of n data sources. Parallel computation of the FMM is considered a challenging problem due to the dependence of the computation on the distribution of the data sources, usually resulting in dynamic data decomposition and load balancing problems. In this paper, we present...
متن کاملThe Inverse Fast Multipole Method
This article introduces a new fast direct solver for linear systems arising out of wide range of applications, integral equations, multivariate statistics, radial basis interpolation, etc., to name a few. The highlight of this new fast direct solver is that the solver scales linearly in the number of unknowns in all dimensions. The solver, termed as Inverse Fast Multipole Method (abbreviated as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1990
ISSN: 0898-1221
DOI: 10.1016/0898-1221(90)90349-o